

CYBERSEER

From IOC to TTP:

How Attack Chains Have Evolved

Session Agenda

- What is an IoC
- How are IoCs used
- loCs applied to cyber kill chain
- What are TTPs
- How are TTPs used
- TTPs + Analytics
- TTPs applied to cyber kill chain
- Why TTPs are the future of detection and Threat Hunting

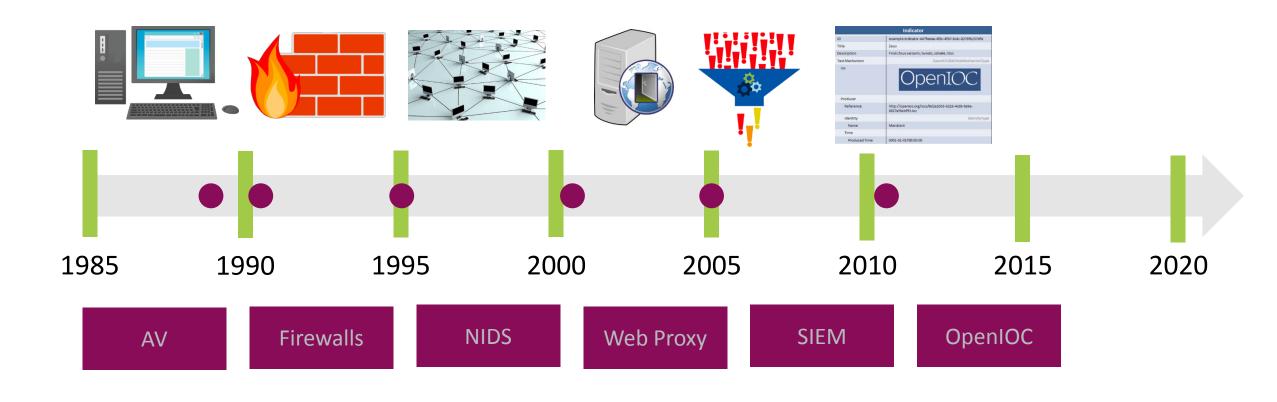
What is an IoC?

Indicators of Compromise (IOC) is an artifact observed on a network or in an operation system that with high confidence indicates a computer intrusion. (from Wikipedia)

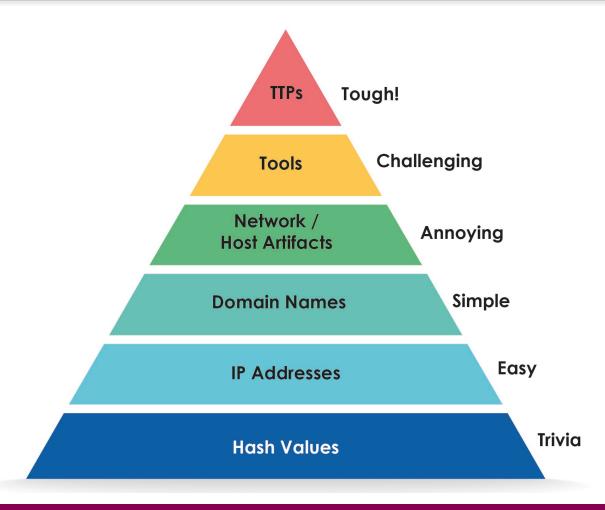
- AV signatures
- Hashes
- Files Names
- IPs
- ULRs/Domains
- Behaviors

	A	В	С	D	E
1	INDICATOR_VALUE	TYPE	COMMENT	ROLE	ATTACK_PHA
2	efax[.]pfdregistry[.]net/eFax/37486[.]ZIP	URL		URL WATCH	LIST
3	private[.]directinvesting[.]com	FQDN		C2	C2
4	www[.]cderlearn[.]com	FQDN		C2	C2
5	46[.]4[.]193[.]146	IPV4ADDR		IP_WATCHL	ST
6	65[.]15[.]88[.]243	IPV4ADDR		IP_WATCHL	ST
7	185[.]104[.]11[.]154	IPV4ADDR		IP_WATCHL	ST
8	185[.]104[.]9[.]39	IPV4ADDR		IP_WATCHL	ST
9	8F154D23AC2071D7F179959AABA37AD5	MD5	FILENAME:DFDTS.DLL FILE_SIZE:435712 SHA1:8CCAA941A	FILE HASH V	VATCHLIST
10	AE7E3E531494B201FBF6021066DDD188	MD5	FILENAME:HRDG022184 certclint.dll FILE SIZE:434688 5	FILE HASH V	VATCHLIST
11	7FCE89D5E3D59D8E849D55D604B70A6F	MD5		FILE HASH V	VATCHLIST
12	81F1AF277010CB78755F08DFCC379CA6	MD5		FILE HASH V	VATCHLIST
13	617BA99BE8A7D0771628344D209E9D8A	MD5		FILE HASH V	VATCHLIST

*GRIZZLY STEPPE IOCS (911)



Evolution of IoCs & Birth of TTP's


Not much has changed

APT Pyramid of Pain

GRIZZLY STEPPE – Russian Malicious Cyber Activity

U.S. Government refers to the Russian civilian and military intelligence service (RIS) responsible for the compromise and exploit of networks and endpoints associated with the U.S. election, as well as a range of U.S. Government, political, and private sector entities as GRIZZLY STEPPE.

- Linked to APT 28 & APT 29
- Targets Include:
 - Government
 - Critical Infrastructure
 - Think tanks
 - Universities
 - Political organisation's

IoCs in Action – GRIZZLY STEPPE

CYBER THREAT KILL CHAIN

Exploitation

C&C:

Weaponization

Network Vuln. Scanning: 89.35.178.104

876 IPs

In attacker space/no IOC Spear-phishing:

Subject: efax #100345

Vulnerabilities: CVE-2016-7855

OnionDuke Malware: 8F154D23AC2071D7F179 959AABA37AD5

8F154D23AC2071D7F179 959AABA37AD5

OnionDuke Malware:

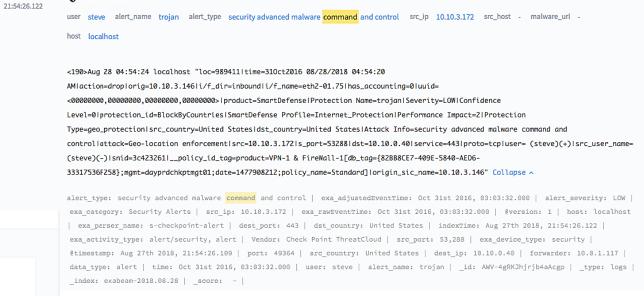
Private.directinvesting.com

The Problem with IoCs

- Single dimension
 - SIEM/OpenIOC overcomes this
- **Known bad only**
- Lack context
- Reactive
- Valid for short period of time
- Attacks are polymorphic
- **False Positives**
- False sense of security
- Too many IoCs to Threat Hunt

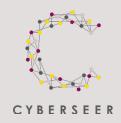
89.35.178.104 IP address information

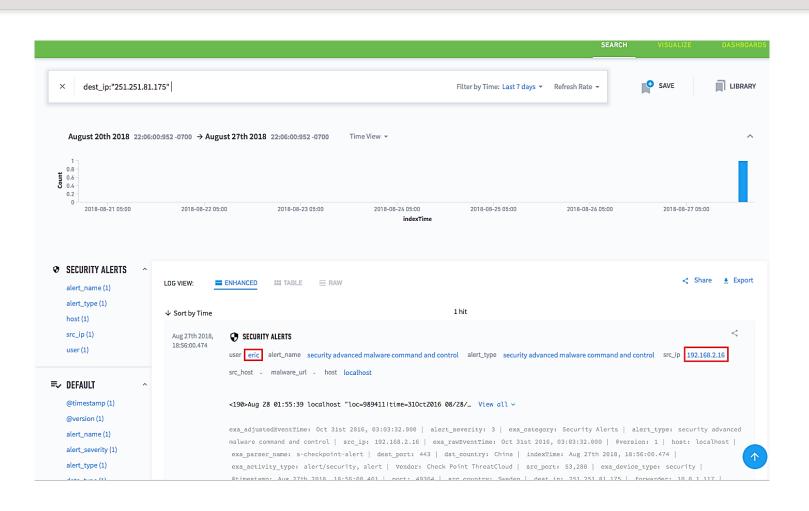
⊕ Geo	olocation	
Count	ry	■ RO
Auton	omous System	80115 (SC Klass Systems Grup SRL)
⊕ Pas	sive DNS replication	
VirusTo	otal's passive DNS only s	tores address records. The following domains resolved to the given IP address.
2015-0	7-09 315andro.net	
▲ Lat	est detected URLs	
Latest	URLs hosted in this IP ad	dress detected by at least one URL scanner or malicious URL dataset.
5/68	2018-08-27 10:02:46	http://89.35.178.104/JP/loading.php
6/68	2018-08-23 06:19:43	http://89.35.178.104/allexe/alina111.exe
7/68	2018-08-22 21:49:40	http://89.35.178.104/allexe/jack111.exe
6/68	2018-08-21 22:06:31	http://89.35.178.104/insider/jack.exe
3/67	2018-08-15 05:00:31	http://89.35.178.104/
6/67	2018-08-08 02:42:38	http://89.35.178.104/www.intesasanpaolo.com/script/ServiceLogin/ib/login.html
4/67	2018-05-23 14:29:28	http://89.35.178.104/www.intesasanpaolo.com/script/ServiceLogin/ib
2/64	2017-04-13 15:50:59	http://89.35.178.104/www.intesasanpaolo.com/script/ServiceLogin/ib/
4/64	2017-03-20 11:28:36	http://89.35.178.104/insider/64.exe
2/68	2016-07-19 17:53:18	https://89.35.178.104/

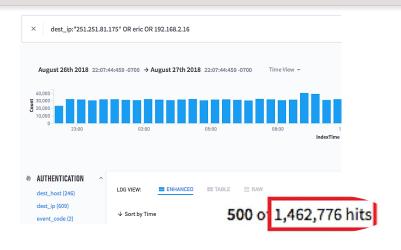

Detecting Threats with IoCs

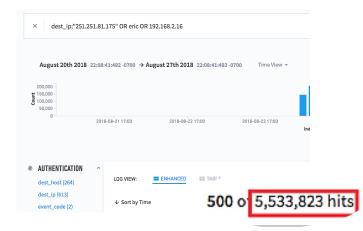
Doesn't scale with traditional SIEM

- Hope you're not patient 0
- IoCs from every security vendor
- Correlation rules = IoCs
- Causes alert fatigue
- Rarely does IoC = compromise
 - How would you know?


SECURITY ALERTS

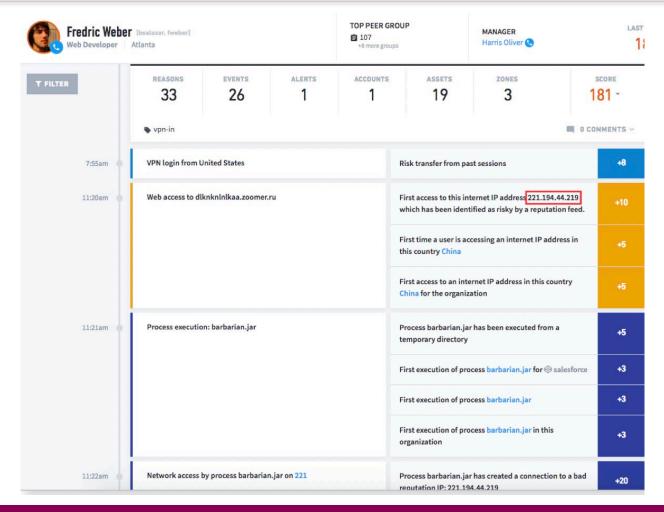





Responding to IoCs

Doesn't scale with traditional SIEM

Complex Threats Span An Entire Organisation And Leave IOCs Behind



Scale IoCs with UEBA

What is a TTP?

Tactics, Techniques, and Procedures (TTP) are "descriptive" in nature and are for characterizing the how and what of adversary behavior (what they are doing and how they are doing it). They are abstracted from specific observed instances within individual specific Incidents so that they may be more generally applicable in developing contextual understanding across Incidents, Campaign and Threat Actors.

Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Exfiltration	Command and Control
Drive-by Compromise	AppleScript	.bash_profile and .bashrc	Access Token Manipulation	Access Token Manipulation	Account Manipulation	Account Discovery	AppleScript	Audio Capture	Automated Exfiltration	Commonly Used Port
Exploit Public-Facing Application	CMSTP	Accessibility Features	Accessibility Features	BITS Jobs	Bash History	Application Window Discovery	Application Deployment Software	Automated Collection	Data Compressed	Communicati on through Removable Media
Hardware Additions	Command- Line Interference	AppCert DLLs	AppCert DLLs	Binary Padding	Brute Force	Browser Bookmark Discovery	Distributed Component Object Model	Clipboard Data	Data Encrypted	
Replication through Removable Media	Control Panel Items	Applnit DLLs	Applnit DLLs	Bypass User Account Control	Credential Dumping	File and Directory Discovery	Exploitation of Remote Services	Data Staged	Data Transfer Size Limits	Custom Command and Control Protocol

^{**}Mitre ATT&CK Technique Matrix

Persistence

Create Account

- Adversaries with a sufficient level of access may create a local system or domain account. Such accounts may be used for persistence that do not require persistent remote access tools to be deployed on the system.
- **Detection:** Collect data on account creation within a network. Event ID 4720 is generated when a user account is created on a Windows system and domain controller. Perform regular audits of domain and local system accounts to detect suspicious accounts that may have been created by an adversary.

Examples

- APT3 has been known to create or enable accounts, such as support 388945a0. [1]
- Dragonfly created accounts that appeared to be tailored to each individual staging target.
- Flame can create backdoor accounts with the login "HelpAssistant" with the Limbo module.^[3]
- Mis-Type may create a temporary user on the system named "Lost_{Unique Identifier}."[4]
- The net user username \password and net user username \password \domain commands in Net can be used to create a local or domain account respectively. [5]
- Pupy can user PowerView to perform "net user" commands and create local system and domain accounts.
- S-Type may create a temporary user on the system named "Lost_{Unique Identifier}" with the password "pond~!@6"{Unique Identifier}."[4]



Challenge with TTPS

Attacker techniques hide in plain sight

- **Brute Force**
- **RDP**
- **PowerShell**
- **Account Creation**
- **Process Discovery**
- **Data Compression**

TTPs + Analytics Cuts Through the Noise

Catching the red team red handed!

Red team compromised domain admin

- Created new credentials
 - Tactic: persistence
 - Technique: account creation

SIEM correlation rule to detect TTP

- Alert on any account creation
 - Can't whitelist DAs
 - DAs perform 95% of account creation

Analytics + TTPs

- Abnormal account creation from asset
- Abnormal account creation from network zone (IP phone network)

TTPs + Analytics No Longer Reactive

APT 3 Techniques	Behavioral Anomalies
Scheduled Task - An APT3 downloader creates persistence by creating the following scheduled task: schtasks /create /tn "mysc" /tr C:\Users\Public\test.exe /sc ONLOGON /ru "System".	 First service installation on host Non-Privileged user created a scheduled task/service on privileged asset Service created to execute a sensitive process (ie. Powershell) Unusual process for service Unusual service name in the org
<u>Uncommonly Used Port</u> - An APT3 downloader establishes SOCKS5 connections to two separate IP addresses over TCP port 1913 and TCP port 81	 Abnormal inbound connection on port for zone Abnormal inbound network connection to this port for asset Abnormal outbound connection on port for zone First failed outbound connection on port for asset First inbound/outbound connection on port for asset
<u>PowerShell</u> - APT3 has used PowerShell on victim systems to download and run payloads after exploitation.	 First/Abnormal execution of PowerShell process for user/peer/org Encrypted argument in PowerShell command detected
Remote Desktop Protocol - APT3 enables the Remote Desktop Protocol for persistence	 First/abnormal remote logon to asset for user/peer First remote logon to asset for group by NEW user Remote logon to private asset for new user
Create Account - APT3 has been known to create or enable accounts, such as support_388945a0	 First/abnormal account creation activity for user/peer Abnormal time to perform account management activity for user/peer/org

TTP's in Action – GRIZZLY STEPPE

CYBER THREAT KILL CHAIN

Weaponization

& Control

Network Vuln. Scanning: Abnormal inbound connection from country

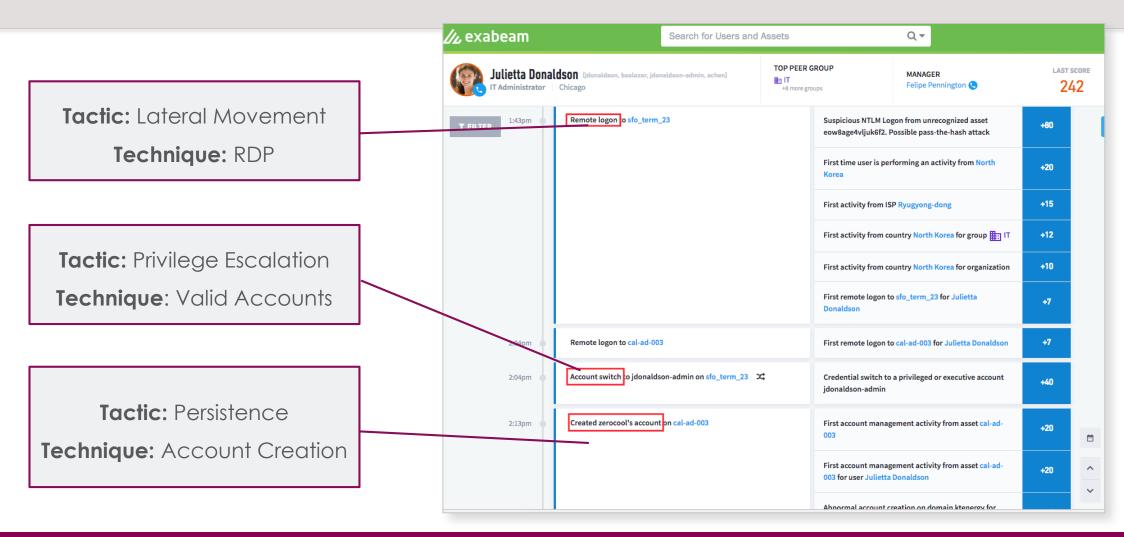
Spearphishing attachment First email domain for Org

Web Shell First execution of process in this directory for Org

Data Transfer Size Limits: Abnormal amount of data uploaded to web for Org

In attacker space/no IOC

Exploitation for Client Execution: Abnormal number of critical windows command executions by user


C&C: First web activity to this country for Org

Risk Fabric Revisited

IOC vs TTP

IOCs

- 100s of millions
- Constantly changing
 - Can change within an attack
- Focus of todays detections
 - Signatures
 - Correlation Rules
- Threat hunting starts with IOCs

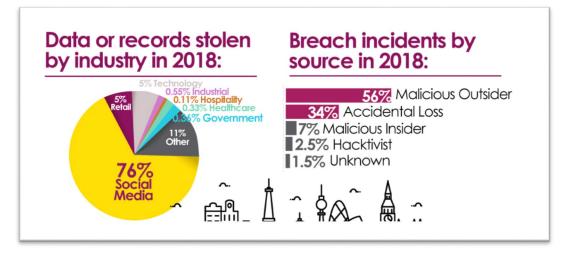
TTPs

- 291 TTPs ATT&CK Framework
- Rarely change
 - No need to develop new TTPs attackers are successful
- Detection moving to TTPs
 - Correlation Rules
 - Behavior*
- Hard to Threat Hunt behavior in legacy SIEM

Credential Lateral Privilege Command and **Defense Evasion** Initial Access Execution Discovery Exfiltration Control

Future of Threat Hunting is TTP Based

- Cast a wider net
 - TH can start broad
 - Start with a question "has anyone done X"
 - Easily filter out the normal
- Identify parts of the kill chain through TTPs
- Create APT* based detection
- Answers the expensive questions
- You might stumble on IoCs
- Hunt for the unknown
 - DGA



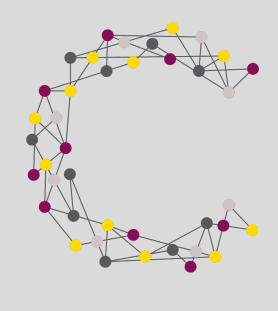
Cyber Stats 2018

3 records a second

For the full infographic visit:

https://www.cyberseer.net/infographic/

6,293,609


records a day

Cyber Predictions 2019

Advanced Threat Detection

CYBERSEER

T: 0203 823 9030

E: info@cyberseer.net

W: www.cyberseer.net

